Laminar burning velocity of gases vented from failed Li-ion batteries

نویسندگان

چکیده

In the last decade, several fires and explosions caused by Li-ion batteries (LIBs) have been reported. This can be attributed to thermal runaway catastrophic failures of LIBs that release combustible gases, which when mixed with air lead fires. To address this explosion hazard, we determine laminar burning velocity (LBV) three gas compositions associated failure a pseudo (simplified) in 20-L sphere at 300 K 100 kPa. simplified avoids toxic gases experiments represent desired characteristics. The LBVs case range from approximately 1050 mm s −1 . Additionally, four different reaction models are used estimate these compositions. We compare theoretical experimental results prediction accuracy models. All over- or under-predicted LBV for A recommendation choosing is given predict various study's intended as input computational fluid dynamic simulations but directly safety engineering • Different vented failed investigated. Laminar velocities (LBVs) multiple determined experimentally. obtained compared predicted mechanisms. Ideal identified based on CO 2 content mixtures. Generation resemble combustion properties an actual LIB vent gas.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanomaterials Meet Li-ion Batteries.

Li-ion batteries are used in many applications in everyday life: cell phones, laser pointers, laptops, cordless drillers or saws, bikes and even cars. Yet, there is room for improvement in order to make the batteries smaller and last longer. The Fromm group contributes to this research focusing mainly on nanoscale lithium ion cathode materials. This contribution gives an overview over our curre...

متن کامل

Voltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic

  In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...

متن کامل

Thin, flexible secondary Li-ion paper batteries.

There is a strong interest in thin, flexible energy storage devices to meet modern society needs for applications such as interactive packaging, radio frequency sensing, and consumer products. In this article, we report a new structure of thin, flexible Li-ion batteries using paper as separators and free-standing carbon nanotube thin films as both current collectors. The current collectors and ...

متن کامل

Surface Phenomena in Li-Ion Batteries

Andersson, A. 2001. Surface Phenomena in Li-Ion Batteries. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 656. 60 pp. Uppsala. ISBN 91-554-5120-9. The formation of surface films on electrodes in contact with non-aqueous electrolytes in lithium-ion batteries has a vital impact on battery performance. A basic understandi...

متن کامل

Laminar burning velocity of natural gas/syngas-air mixture

This study suggests the equimolar mixture of Natural Gas (100% CH4) and Synthesis Gas (40% H2 + 40% CO + 20% CO2) as an alternative to reduce hydrocarbons consumption and reduce pollutant emissions. As a key parameter to characterize this combustible mixture, the laminar burning velocity was studied based on numerical simulations and experimental measurements in fl ames generated using a contou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Power Sources

سال: 2021

ISSN: ['1873-2755', '0378-7753']

DOI: https://doi.org/10.1016/j.jpowsour.2021.230141